Returns game-by-game four factor statistics.
Usage
bart_game_factors(year = current_season())
Details
For a brief explanation of each factor and its computation, please visit KenPom's blog. `avg_marg` and `opp_avg_marg` is the the average lead or deficit during a game.
Examples
bart_game_factors(year=2022)
#> # A tibble: 10,950 x 28
#> date type team conf opp opp_conf loc result avg_marg
#> <date> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl>
#> 1 2022-04-04 post Kansas B12 North~ ACC N W, 72~ -2.09
#> 2 2022-04-04 post North Carolina ACC Kansas B12 N L, 72~ 2.09
#> 3 2022-04-02 post Duke ACC North~ ACC N L, 81~ 0.0621
#> 4 2022-04-02 post North Carolina ACC Duke ACC N W, 81~ -0.0621
#> 5 2022-04-02 post Kansas B12 Villa~ BE N W, 81~ 10.9
#> 6 2022-04-02 post Villanova BE Kansas B12 N L, 81~ -10.9
#> 7 2022-04-01 post Coastal Carolina SB Fresn~ MWC H L, 85~ -13.2
#> 8 2022-04-01 post Fresno St. MWC Coast~ SB A W, 85~ 13.2
#> 9 2022-03-31 post Texas A&M SEC Xavier BE N L, 73~ -0.0246
#> 10 2022-03-31 post Xavier BE Texas~ SEC N W, 73~ 0.0246
#> # ... with 10,940 more rows, and 19 more variables: opp_avg_marg <dbl>,
#> # adj_o <dbl>, adj_d <dbl>, off_ppp <dbl>, off_efg <dbl>, off_to <dbl>,
#> # off_or <dbl>, off_ftr <dbl>, def_ppp <dbl>, def_efg <dbl>, def_to <dbl>,
#> # def_or <dbl>, def_ftr <dbl>, game_score <dbl>, season <dbl>, tempo <dbl>,
#> # game_id <chr>, coach <chr>, opp_coach <chr>