Skip to contents

Returns game-by-game four factor statistics.

Usage

bart_game_factors(year = current_season())

Arguments

year

Defaults to current season (YYYY).

Value

Returns a tibble of four factor statistics

Details

For a brief explanation of each factor and its computation, please visit KenPom's blog. `avg_marg` and `opp_avg_marg` is the the average lead or deficit during a game.

Examples

bart_game_factors(year=2022)
#> # A tibble: 10,950 x 28
#>    date       type  team             conf  opp    opp_conf loc   result avg_marg
#>    <date>     <chr> <chr>            <chr> <chr>  <chr>    <chr> <chr>     <dbl>
#>  1 2022-04-04 post  Kansas           B12   North~ ACC      N     W, 72~  -2.09  
#>  2 2022-04-04 post  North Carolina   ACC   Kansas B12      N     L, 72~   2.09  
#>  3 2022-04-02 post  Duke             ACC   North~ ACC      N     L, 81~   0.0621
#>  4 2022-04-02 post  North Carolina   ACC   Duke   ACC      N     W, 81~  -0.0621
#>  5 2022-04-02 post  Kansas           B12   Villa~ BE       N     W, 81~  10.9   
#>  6 2022-04-02 post  Villanova        BE    Kansas B12      N     L, 81~ -10.9   
#>  7 2022-04-01 post  Coastal Carolina SB    Fresn~ MWC      H     L, 85~ -13.2   
#>  8 2022-04-01 post  Fresno St.       MWC   Coast~ SB       A     W, 85~  13.2   
#>  9 2022-03-31 post  Texas A&M        SEC   Xavier BE       N     L, 73~  -0.0246
#> 10 2022-03-31 post  Xavier           BE    Texas~ SEC      N     W, 73~   0.0246
#> # ... with 10,940 more rows, and 19 more variables: opp_avg_marg <dbl>,
#> #   adj_o <dbl>, adj_d <dbl>, off_ppp <dbl>, off_efg <dbl>, off_to <dbl>,
#> #   off_or <dbl>, off_ftr <dbl>, def_ppp <dbl>, def_efg <dbl>, def_to <dbl>,
#> #   def_or <dbl>, def_ftr <dbl>, game_score <dbl>, season <dbl>, tempo <dbl>,
#> #   game_id <chr>, coach <chr>, opp_coach <chr>